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In [1] the concept of minimal solution in the study of the Newton-Pade table
was introduced, and its relationship with the Newton-Pade approximant was
investigated. In this paper we show how we can use this concept to characterize
the structure of the Newton-Pade table. Therefore we first study the table of
minimal solutions. The results obtained exhibit some remarkable differences
with the structure of the Pade table.

1. INTRODUCTION

Let {z;}i:o be a sequence of (not necessarily distinct) points in the complex
plane. Let fez) be a function which is holomorphic on some open set E
containing these points, denoted by fez) E B(E). If fez) =1= 0 for z E E, then
we will use the notation fez) E B*(E). Then we can construct in a purely
formal manner a Newton series associated with eachf(z) E B(E),

00

f == I fOiWOi ,
i~O

where we used the abbreviation woo(z) = 1 and WOi(Z) = (z - Zi-l) WO,i_l(Z)
for i = 1,2,....

Let (m, 11) E N2 and fez) E H(E); then the Newton-Pade approximation
problem for fez) of order [m, 11] is defined as follows: Find two polynomials
p(z) = L:o aOiwO;(z) and q(z) = L;~O bOiwO;(z) satisfying:

(a) 8p ~ m, oq ~ 11,

(b) qf - p = wo,m+n+l(z) . v(z), with v E B(E).
(I)

Here astands for "degree of."
Introducing the function a: H(E) -+ N, defined by aU) = 11 if and only if

hi = ° for i = 0, 1,... ,11 - I and j~n =1= 0, then (b) is equivalent to
a(qf - p) ;:? m + 11 + 1.
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The Newton-Pade problem (1) is equivalent to solving the homogeneous
system of equations

k

L bojfjk = aOk ,
j~O

= 0,

k = 0, 1,... , m

k = m + 1,... , m + n

(2a)

(2b)

(3)

for the unknowns aoo , aOI , ••• , aom and boo, bOI , ••• , bon' HerebY.hk denotes
the divided difference of order k - j (k ~ j) determined for fez) in the points
Zi , Zi+l , ... , Zj • By convention.hk = 0 if j > k and bOj = 0 if j > n.

In (1] we introduced the concept of minimal solution by proving the
following theorem.

THEOREM 1. If rank [m, n] = n - d, then there exists a unique solution
(up to a constant factor) P;'n, q;'n for (1) with oP;'n ~ m - d and
oq;'n ,(; n - d, where at least one of the upper bounds is reached. Every other
solution of (1) can be written in the form s(z) . P;'n(z), s(z) . q;'n(z) where
s(z) is a polynomial ofdegree less than or equal to d.

In this theorem we denote by rank [m, n], the rank of the coefficient
matrix of the system (2b). By definition we call P;'n , q;'n the minimal solution
of order [m, n]. The irreducible rational form rmn = Pmn!qmn , corresponding
to P:;'n!q;'n , is then called the Newton-Pade approximant of order [m, n].
Normalizing both, the minimal solution and the Newton-Pade approximant,
such that q;'n and qmn are monic, there exists the following relationship
between them [1],

P~n(Z) = dmn(z) . Pmn(z),

q~n(z) = dmnCz) . qmn(z),

with dmn(z) = n~~1 (z - za), 0 ~ I ~ min(m, n) and with {Za}~~1 C {zi}7!on .
Hereby we take as conve~tion that dmn(z) = 1 if I = O. The points Za.
appearing in dmnCz) are called unattainable points for rmn(z), We refer to [l]
for a justification of this terminology.

Both the minimal solutions and the Newton~Pade approximants can be
arranged in two-dimensional tables. These tables are called the minimal
solution table and the Newton-Pade table, respectively. The tables are
organized such that the element of order [m, n] can be found on the inter­
section of the m + 1 column and the n + 1 row.

In the remaining part of this paper we will suppose that fez) E H*(E).
This restriction is analogous to the restriction Co c/= 0 in the Pade approxi­
mation problem for L7~0 CiZi (see, e.g., [2, p. 13]). It is necessary to prove
properties for the complete tables, and to avoid limiting ourselves to their
lower triangular parts.
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In the next section we prove some theorems which give an insight into
the structure of the table of minimal solutions. As an almost immediate
consequence of these results we can derive some theorems which charac­
terize the structure of the Newton-Pade table. This is done in Section 3.
In the last section we give some examples, illustrating the theory.

The development of the theory illustrates the importance of the concept
of minimal solution, which was first introduced in [I]. Indeed, the charac­
terization of the Newton-Pade table can be derived almost immediately from
the study of the table of minimal solutions.

2. CHARACTERIZATION THEOREMS FOR THE MINIMAL SOLUTION TABLE

In the following theorems we are interested in geometric figures of equal
solutions. We will denote these figures by the indices of their corner elements.

THEOREM 2. If rank[m, n] = rank[m - d, n - d] = n - d*, where
d* ?': d, then all the minimal solutions lying in the triangle of the minimal
solution table with corners [m - d, n - d], [m - d, n -+- d], and [m + d, n - d]

are equal to P~-d.n-d , q~-d.n-d .

Proof Since rank[m, n] = n - d*, we have that ap~.n ~ m - d* and
aq~.n ~ n - d*, where at least once the upper bound is reached. Moreover
a(q~nf- P~n) ?': m + n + 1. Consequently, using the definition of minimal
solution,

Pr~n = s(z) . P~-d.n-d ,

where, in view of (3), s(z) is a divisor of n;~~n (z - Zj). However, since
rank[m - d, n - d] = n - d* we have ap~_d,n_d ~ m - d* and
aq~_d.n_d ~ n - d*, where at least one of the upper bounds is reached.
Consequently s(z) == 1. And hence a(q~_d.n_af- P~-d.n-d) ?': m + n -+ 1,
which proves the theorem. I

If rank[m - d, n - d] < rank[m, n] ~ n - d then s(z), as defined in the
proof of Theorem 2, does not need to be identically 1. Examples can be
constructed where this phenomenon arises.

EXAMPLE 1. Let ZO+3i = - 3, Z1+3i == 0, Z2+3i = 1, Z3+3i =c= 2 for
i = 0, 1,2, and letf(-3) = t,j(O) = 2,1(1) = tf(2) = !'1'(-3) ==: -t,
1'(0) = -1,1'(1) = -t, 1'(2) = 1,1"(-3) = -t, 1"(0) = 1, 1"(I) = t,
1"(2) = I.
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Then

and

pi4 = (z + 2)(z - 2)

q~ = (z + 1)(z - 2)

P:5 = (z + 2)(z - 2) z

q:5 = (z + l)(z - 2)z

with rank [3, 4] = 3

with rank [4, 5] = 4,

Hence we have a case as described in the remark preceding this example and
we see that s(z) = z =1= 1.

Since in Theorem 2, min(m - d* - OP:;'_d,n_d , n - d* - oq:;'_d,n_d) = 0,
there remains the possibility that max(m - d* - oP:;'-d,n_d, n - d* ­
oq;'_d,n_d) > O. This possibility is treated in the next two corollaries.

COROLLARY I, If under the conditions of the theorem oq:;'-d,n-d =
n - d2 - d* with d2 > 0 and rank[m - d, n - d2 - d) = n - d2 - d*,
then all the minimal solutions lying in the triangle of the minimal solution

table with corners [m - d, n - d2 - d), [m - d, n + d] and [m + d2 + d,

n - d z - d) (see Fig. 1) are equal to P:;'-d,n-d
2
-d , q:;'-d,n-d

2
-d .

[ m-d. n+d I

[ m+dz+d, n-dz-d 1

FIGURE 1

Proof, Since rank[m - d, n - d2 - d) = n - d2 - d* we necessarily
have

P* -- *m-d,n-d = Pm-d,n-d2-d ,

* -- *qm-d,n-d = qm-d,n-d2-d ,
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The condition rank[m - d, n - d2 - d] n -- d2 - d* IS necessary,
since otherwise counterexamples can be constructed.

Analogously we have:

COROLLARY 2. If under the conditions of the theorem E'P:'-d,n_d =
m - d1 - d* with d1 > 0 and rank[m - d1 - d, n - d] = n - d*, then
all the minimal solutions lying in the triangle of the minimal solution table
with corners [m -- d1 - d, n - d), [m - d1 - d, n + d1 + d], and [m + d,
n - d] (see Fig. 2) are equal to P;-dcd,n-d , q;-dcd,n-d .

[m+d, n-d 1

FIGURE 2

Hence if one of the degrees of the polynomials P;-d,n-d, q;;,-d,n-d,
occurring in Theorem 2, does not reach its upper bound, this means that the
triangle of equal minimal solutions possibly can be extended, either to the
left or above, depending on whether it is q;'-d,n-d or P;-d,n-d which does not
reach its upper bound.

On the other hand, the position of the hypotenuse of the right-angled
triangle is determined by the number a(q;;'_d,n_df - P;:'-d,n-d), see Fig. 3.

If a(q;'-dl'n-dJ - P;-d"n-d.) = m + n + 1 and CP;-d"n-d
2

= m - d1 ,

Cq:'_d n-d = n - d2 , then we say that [m - d1 , n - d2], [m - d1 , n + d1 ]
l' '2

and [m + d2 , n - d2] determine a maximal triangle of equal minial solutions.
This terminology is made clear by the following theorem.

THEOREM 3. If OP;_d n-d = m - d1 , oqm*-d n-d = n - d2 and
l' 2 l' 2

a(q* f - p* ) = m + n + 1 then p* == p* q*cc=m-d1 ,n-d2 m-dl'n-d2 'kt m-al'n-d2 " Jet -

q;'-d"n-d
2
if and only if [k, I] belongs to the triangle with corners [m - d1 ,

n - d2 ), [m - d1 , n + d1], and [m + d2 , n - d2].
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[m-d. n-d I [m-d.n+dl

* *if U(qm-d.n-df - Pm_d,n_dJ=m+n+1

'*--------.r---- - - ..,,
/

/

"/

/

"/

\~./,
"/,

/ ///~ * *
~ if U(qm_d.n_df - Pm- d • n- d » m+n+1

I ,,"

I "

*

[ m+d.n-d

FIGURE 3

Proof We only have to prove the necessary condition, since the suffi­
ciency is obvious. Since 0P;'-d

"
n-d

2
= m - d1 and oq;'-dl'n-d

2
= n - d2 ,

we necessarily have k = m - d1 + i and I = n - d2 + j with i,j ;:?; O.
On the other hand,

implies that k + I + I :S;; m + n + I, or i + j :S;; d1 + d2 • I
This theorem can also be formulated in a slightly more general way.

THEOREM 4. If 0P;'-d,+i,n-d
2
+i = m - d1 , oq;'-d,+i,n-d

2
+i = n - d2 ,

and a(q;'-d,+i,n-d
2
+J - P;'-d,+i.n-d

2
+i) = m + n + I, where i,j;:?; 0

and i + j :S;; d1 + d2 , and if rank[m - d1 ,n - d2] = n - d2 , then ptl ==
P;'-dl'n-d

2
, qJ:i = q;'-d

"
n-d

2
if and only if [k, l] belongs to the triangle with

corners [m - d1 , n - d2], [m - d1 , n + d1] and [m + d2 , n - d2].

Proof In view of the initial hypothesis,

However, since rank[m - d1 , n - dz] = n - dz , s(z) = 1. Consequently,
we have 0P;'-d

"
n-d

2
= m - d1 and oq;'-d

"
n-d

2
= n - dz . Hence the previous

theorem can be applied. I
This theorem no longer holds if rank[m - d1 , n - dz] < n - dz . How­

ever, then there exists a "parallelogram" of equal minimal solutions. This
is shown by the next theorem.
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THEOREM 5. JfCPI~dl,II", tI1 -~ d]--- d]*, C)q'~-dl.1I d, n 112 dc <

and a(q'::,-<l"n-d,f p;~_ <I"n- rl) c= m -+ n I with d/', d~" 0 and
max(d] *, dz*) > 0, and ij'rank[m -- d] - I, n - dz]=- rank[m -- ell , n dJ,
then pit -:c: P;;"-d"lIrl, ' q~~ q'~-dl'n-d, if and only ij' [k, I] belongs to the
"parallelogram" with corners [m - d] dz*, n - dz -- d2*], [m + eli di *,
n - dz - dz*], [m d2 - d]*, n - d2 dl *], and [m -- d] -- dl'"
n - d2 + d]*].

Proof Again we confine ourselves to prove the necessary condition,
since the sufficiency is rather obvious. Analogously as in Theorem 3 one
proves that k = m - d] - d] * -+ i, I = n - di -- d2*+- j with i, j ?': 0
and i + j :(; dl + d2 -+ d] * dz*. To prove the theorem it then suffices
to show that i + j ?': d] * -+ d2 *. This will be the case if we prove that
aptl < tI1 - dl - d] * and Oqil < n - d2 - d2* as soon as [k, l] belongs to
the triangle with corners [m - dl - dl*, n - d2 - d2*], [m - dl + dz* - I,
n - d2 - dz*], and [m - d] - dl*, n - dz + d]* -- I]. Therefore we note
that since rank[m - d] ---- I, n - d2 ] < rank[m - d] , n - d2 ], 0P;;".d , I.n,], <.

m - dl - dl* and oq;'-d,-],n-d, < n - dz - d2*· Consequently,p:'_d, ],II-I!, '
q;;"-dc l,n.d

2
is also a solution of the Newton-Pade problem of order [k, I],

where [k, l] belongs to the above defined triangle. Hence i-- j ?': d]* d~*.

I

Note that one pair of sides of this parallelogram consists of vertical lines
and that the other pair is parallel with the antidiagonaI.

To get a theorem that further enlightens the structure of the table of
minimal solutons, we first introduce a polynomial s](z). We suppose that
ap;:"_d n d c= m - dl , cq:'.I! n-d = n - dz , and a(q:'_d n-I! j'

" l' -21' - -2 l' - 2

Pm*.d n-d) = m + n + J. This implies that we can write
l' 2

where v(z) EO H(E). Let then zm+n+l+~l be the first point in the sequence
{zm+n+l+j}}:l for which v(z) = O. Then

with vl(z) E H(E). Next let zm+n+I+~2 be the first point in the sequence
{zm+n+l+j}J:~1+1 for which viz) = O. Continuing this process we obtain at
last
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when: w(z) E H(E). Then sz(z) is defined by

with

311

if I < I +:X l ,

f

TI (z .- zm+n+1+~i)'
j~l

if 1 + (Xl :S;; 1 + (Xt :S;; I < 1 + :Xt .

Before proving the theorem we note that the points Zm+n+l+~ ,j = 1,2,... ,
can also be characterized in another equivalent way. Therefo~e we have to
remember that rmn(z) can also be treated as a rational interpolant, inter­
polating the functionf(z) in the Hermite sense in the points {Zi}7'~+On (see [1]).
The points Zm+n+l+<> ,j = 1,2,... , are then the interpolation points in which

i

rmn still satisfies the interpolation condition and for which

where ZB
i

(i = I, 2, ... ,!') denote the possible unattainable points of rmn .

Or, in words, once a point Zi is unattainable for rmn , then all the interpolation
points Zj = Zi and.i > i have to be excluded. Note that in the sets defined
above {Zm+n1-lh}~:i = .0 if i = 1, and that {Z6}~~1 ~= 0 if rmn has no
unattainable poi~ts.· ,

That this is an equivalent way of characterizing the points zm+n+l+o
j

'

.i = 1, 2, ... , can be seen by using the lemma of Salzer [3, p. 487].
With the above definitions and notations we can formulate the following

theorem.

THEOREM 6. If ap~~dl'n~d2 = m - dl , aq:'-dl.n~d2 == n - dz , and
a(q~--dl.n-dJ- P::'-dl.n~d2) = m -'- 11 -L I, then ({ 1 2t + dl + dz ,

for i = k, k + 1, ... , dl + d2 -+- 1- k, where I = 1,2, ... , and k = 1- t,
and where SI(Z) is the polynomial defined above.

Proof From Theorem 3 we know that the minimal solutions lying in the
triangle with corners [m - dl ,11 - d2 ], [m - dl , n -+- dtl, and [m + d2 ,

n - dz] are all equal to each other. The triangle is even a maximal triangle
of equal minimal solutions. To prove the theorem we first show that
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p ,= SI(Z) . P;~-dl'n-d2' q ,= SI(Z) . q';;.-dl'n-d2 with SI(Z) defined as above, IS

a solution of the Newton-Pade problem of order [m ~ dl' i, n dl

I - i] if I :(; 2t -1- dl + d2 •

Now, since oS, = t we have that

cp == m ~ dl i I - t = m --- dl k
and

(q = n - d2 -+ k.

Under the hypothesis that k I + dl + d2 - k one has k :(; I d l .~.- d2 - i
with i = k, k -+- 1,... , l-e dl ~ d2 ~ k. For suppose for some i, k I· dl

d2 - i, then certainly k I dl -i- d2 - (l -+- dl + d2 - k)- k, which
is a contradiction. The hypothesis k I -+- dl + d2 - k is equivalent to
I :(; 21 - 2k + dl -- d2 = 2t + dl + d2 • Hence, k :s; 1- dl d2 k if
and only if I :(; 2t + dl + d2 •

Consequently, only if this hypothesis is satisfied may we write.

op :(; m - dl + i,

oq :(; n ~ d2 I + dl + d2 - i = n + dl -+- I-i.

Further, because of the way in which we have constructed SI(Z), we have that

a(qf - p) ?: m -I 11 + I -j.. 1.

This proves that if I :(; 2t -j- dl + d2 , then p, q is a solution of the Newton­
Pade problem of order [m - dl i i, 11 -+- dl -+- I - i]. Now we show this
solution is the minimal solution.

To this end suppose that p, q is not the minimal solution. Then by
Theorem 1, the minimal solution must have the form

Sz(z) . dm-dl.n-d2(z) Pm-dl.n-d2 SICZ)' dm--d"n-d2(z) qm-dl,n-d2
- P(z) P(z)-

where P(z) is a polynomial and dm -d
"

n-d2(Z) is the greatest common divisor
of Pm*-d n-d ,qn~-d n-d . Since Pm-d n-d , qm-d n-d are relatively prime,

l' 2 "1'2 l' 2 . l' 2

P(z) must divide SI(Z) . dm -d
t
,n-d2(Z). By construction, this is impossible

without violating the condition a(qf - p) ?: m + 11 + 1-'- I. Hence P(z)
has to be a constant factor. And this implies that p, q is the minimal solution
for the Newton-Pade problem of order [m - dl -+- i, 11+- dl -f- I ~ i]. I

3. CHARACTERIZATION THEOREMS FOR THE NEWTON-PADI~ TABLE

The theorems of the previous section explain the structure of the minimal
solution table. From these theorems we can immediatly derive some
theorems enlightening the structure of the Newton-Pade table.
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THEOREM 7. If 8P;'-dl ,n-d
2

= m - d1 , Oq;'-dl'n-d
2

= n - d2 , and
a(q;'-dl'n-d/ - P;'-dl'n-d) = m -+ n -+ 1, then all the Newton-Pade approxi­
mants lying in the square of the Newton-Pade table determined by [m - d1 ,

n - d l ] and [m -+ d2 , n -+ dl ] are identical.

Proof It is clear that the assertion is true for the elements lying in the
triangle determined by [m - dl • n - d2], [m - dl ,n -+ dl ], and [m -+ d2 ,

n - d: l ], since by Theorem 3 all these elements have the same minimal
solution. We show that, whatever the following interpolation conditions may
be, this is also the case for the elements lying in the triangle determined by
[m - dl + 1, n + dl ], [m + d2 , n - d2 + I], and [m + d2 , n -+ d1]. Hence
we have to show that rm - d1+i.n-d

2
+J ='= r",-dl.n-d, for I :c::; i,j :c::; dl -+ d2

and for m -+ n -+ I :c::; m -+ n - dl - d2 + i -+ j which is equivalent to
d1 + d2 -L 1 :c::; i -+ j. Now, using the definition, it is clear that the Newton­
Pade problem of order [m - dl -I- i, n - d2 + j] certainly is satisfied by
p = s(z) . P;'-d n-d . q = s(z) . q~-d n-d , with

p 2 - ·1' 2

m--l-n-dl~d2+i+j

s(z) = IT (z - Zi).
i=YrI+n+l

The theorem is proved if we can show that op :c::; m - d1 + i and oq :c::; n ­
d2 -+ j. Considering the expressions for p and q we get:

op :( (m - dl ) + (i + j - dl - d2) = m - 2d1 - d2 + i + j :c::; m - d1 -+ i,

oq "'; (n - d2) + (i -+ j - dl - d2) = n - d1 - 2d2 + i + j :c::; n - d2 + j,

which completes the proof. I
Using Theorem 4 and a similar argument as in the previous theorem,

a slightly more general theorem can be proved.

THEOREM 8. If OP;'-d1+i,n-d
2
+i = m - d1 , oq;'-dl+i,n-d

2
+i = n - d2 , and

( * f- * ) - -I- '1 h " > 0 d' + . c<:a qm-dl+i,n-d,+i Pm-rll+i,n-d+
2
i - m , n I , were I,J Y' an I J ~

dl + d2 , and ifrank[m - dl , n - d2 ] = n - d2 , then all the Newton-Pade
approximants lying in the square determined by [m - d1 , n ~ d2 ] and [m -+ d2 ,

n + d l ] are identical.

As an immediate consequence of Theorem 6, we get a corresponding
theorem enlightening the structure of the Newton-Pade table.

THEOREM 9. Under the same hypothesis as formulated in Theorem 6, if
I :c::; 2t + dl + d2 ,

for i == k, k + 1,... , d1 -+ d2 + I _. k, where I = 1,2,... and k = 1- t.
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Before giving some examples, we first remark that the structure of the
Newton-Pade table can also be pictured in a way different from the one
given in Theorem 9.

THEOREM 9*. Under the same hypothesis as formulated in Theorem 6, if
(Xt < 2t + d1 + d2 , then

for I = (Xt + 1, (Xt + 2, ... , d1 + d2 ..;- 2t, where t == 1,2, ....

The proof of this theorem parallels the proof of Theorem 6.
As is well known [2, p. 13], the Pade table (which is a special case of the

Newton-Pade table) has a square block structure. If there are two equal
elements in the Pade table there exists a square block of equal elements.
However, once the block is determined, no other elements of the table will
be equal to the elements of this block.
As follows from Theorem 9*, in general the Newton-Pade table will not have
a square block structure. However, one may say that the starting point is
still a square block (eventually of length 1). This block can have a sort of
tail concentrated symmetrically along its main diagonal (see Examples 2
and 3). A second difference with the Pade table lies in the fact that further on
in the table there may occur elements which are equal to the elements of the
block. These elements, however, will again be concentrated along the same
diagonal, and will have an analogous structure (see Example 2).

4. SOME EXAMPLES

To conclude we give two examples, illustrating the structure of the Newton­
Pade table and of the table of minimal solutions.

EXAMPLE 2. Let Z0+41 = -3, Z1+41 =, 0, Z2-r41 1, Z374; ~= 2, Z12+1 = 3
for i = 0, 1,2, and let f( -3) = t, f(O) = 2, f(1) = !, f(2) = t 1'(-3) =
-t, 1'(0) == 1,1'(1) = 1,1'(2) = -i, /,,(-3) I, /,,(0) = 2, /"(l) = 1.
/,,(2) = fi, f(3) = !, 1'(3) = I, /,,(3) = I.

Then P1~ = Z -;. 2, qiI= ZL I, and u(qtJ- P1i) = 5.

(a) Structure of the Newton-Pade table (see Table I). In view of
Theorem 7, all the Newton-Pade approximants lying in the square deter-
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minded by [1, 1] and [3,3] are equal to '11 = (z + 2)j(z + 1). Using
Theorem 9* we see that:

(Xl = 2 < dl + d2 + 2t = 4,

(X2 = 6 <t dl + d2 + 2t = 6,

(X3 = 7 < dl + d2 + 2t = 8.

TABLE I

Newton-Pade Table for Example 2

r
mn 1_1_,__2_1__3_.__4 5 6_

I z+2 z+2! z+2
1 ------

z+l z+l z+l

2

3

z+2 z+2 z+2-- -- --
Iz+1 z+l z+l

--1--1------'--
Z+2

1

' z+21 z+2 z+2-- -- -- --
z+l z+l z+l z+l

: I

z+2 z+2-- --
z+l z+l

4

5

I
-i-----

I i'-'-1-1---
6 I j ! i z + 2

I I I I ~

Hence,
'4.1 =' '11 := '1,4' for I = 3,4,

r6.-2+1 == '11 := '-2+1.6' for I = 8.

Remark that although r;l(z) Iz~o = 2, Z9 EO [({Z5+i}Lo\{Z7}) u 0], viz.,

(b) Structure of the table of minimal solutions (see Table II). In view of
Theorem 3 the triangle determined by [1, 1], [1,3], and [3, 1] is a maximal
triangle of equal minimal solutions, viz., equal to pil = Z + 2, q{l = Z + 1.

V sing Theorem 6 we see that
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TABLE II

Table of Minimal Solutions for Example 2

w.....
0-,

1 2 3 4 5 6
q~P
- -----------

z+2
i

1
z+2 z+2 I

z + I z + 1 z+1

------- ---~--- ._._._~
_.__ ._.__._---._._---~

----~---_.----<-~-------~-

2
z + 2 z+2 (z + 2)z

z+1 z+1 (z + 1)z

---~._.------- ~-_._--

3
z+2 (z + 2)z (z + 2)z(z - I) (z + 2)z(z ~ I)

z+1 (z +- I)z (z + 1)z(z ~ 1) (z + 1)z(z-- 1)

--- ~-~--- ---------- -_._------ -- _ ..--- - ----- -----------------

4
(z -+- 2)z(z - I) (z -+ 2)z(z - 1)(z + 3)

(z + l)z(z -- 1) (z +- 1)z(z- 1)(z +- 3)

--- _._---~ -_._-----_.._-~- ----_.------ ----
5

--- ------~---_.-._-
----------~~-

6
(z + 2)Z2(Z -- 1)2(Z + 3)

(z + 1)z2(Z - 1)2(z + 3)

CJ

(j
r­
»
m
'"'"mz
'"
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for I === 1,2,3,4,8. Consequently:
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1= 1, \ P'iti,A-i+l = (z + 2) z
i q'iti,A-itl = (z + 1) z

for i = 1, 2 and A. = 3,

1=2,

1=3,

\ P:~i,A~itl = (z + 2) z(z - 1)
I qi-i,A~i-tl = (z + 1) z(z - 1)

\ Piti,A-hl = (z + 2) z(z - 1)
I Qiti,A-i+l = (z + 1) z(z - 1)

for i = 2 and A. = 4,

for i = 2, 3 and ,\ = 5,

1=4,

1=8,

1
Pl**ti,A-itl ~_- (z + 2) z(z - 1)(z + 3) £ A.
Ql+i,A-i+l - (z + 1) z(z - 1)(z + 3) or i = 3 and = 6,

l Piti,H+l = (z + 2) Z2(Z - 1)2 (z + 3) for i = 5 and ,\ = 10.
I q'iti,A-i+l = (z + 1) Z2(Z - 1)2 (z + 3)

EXAMPLE 3. Let Zj+6i = -3 + j for j = 0, 1,...,5 and i = 0,1,2.
And1etf(-3) = 1,1(-2) = 3,f(-1) = 3,1(0) = 10,f(1) = 5,f(2) = 6,
1'(-3 + j) = 1 for j = 0, 1,... ,3, 1'(1) = 3, 1'(2) = 1, 1"(-3 + j) = °
for j c= 0, 1,...,4 and 1"(2) = 5.

Then pt2 = (z + 4)(z + 2) z, q;2 = (z + 2) z, and a(qt2f - pt2) = 7.

(a) Structure of the Newton-Pade table (see Table III). In view of
Theorem 7 we conclude that all the Newton-Pade approximants lying in
the square determined by [3, 2] and [4, 3] reduce to z + 4.

TABLE III

Newton-Pade Table for Example 3

2 3 4 5 6 7

3 =+4 =+4

4 =+4 =+4 =+4

5 =+4 =+4

6

7

8

=+4 z+4

=+4 =+4 =+4

=+4 =+4



TABLE IV

Table of Minimal Solutions for Example 3

P~n
2 3 4 5 6 7q:n

~---~-------------

3
(z + 4)(z + 2)z (z + 4)(z + 2)z

(z + 2)z (z + 2)z

I --I~·-
4

(z + 4)(z + 2)z (z + 4)(z + 2)2Z (z + 4)(z + 2)2Z

(z + 2)z (z + 2)2Z (z + 2)2Z
I

.~--------- ---

5
(z + 4)(z + 2)2Z (z +- 4)(z + 2)2Z2

(z + 2)2Z (z + 2)2Z2

----i-----~----- ----_.--

6
(z + 4)(z + 2)2Z2(Z - 1) (z + 4)(z -+ 2)2Z2(Z - 1) :

I
(z + 2)2Z2(Z - 1) (z + 2)2Z2(Z - 1)

7
(z + 4)(z + 2)2Z2(Z - 1) (z + 4)(z + 2)3Z3(Z 1) 1~;-r--~(Z;-~3Z2(~- 1)

(z + 2)2Z2(Z - 1) (z + 2)3Z2(Z-- 1) I (z -j 2)3Z2(Z - 1)
I

---~-----~-_..- ..---- --------- -------------,._~------------_..._---_.,.- -- -" --------

8

I

(z -+ 4)(z + 2)3Z2(Z - - I) I (z -+ 4)(z -, 2)3Z3(;:- 1)

I
(z +- 2)3Z2(Z -- 1) '(z 2)3Z3(Z -- I)

---"--'-'~-'-

w-00

C)
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Using Theorem 9* we see that:

(Xl = 1 < dl + d2 + 2t = 3,

(X2 = 4 < dl + d2 + 2t = 5,

(X3 = 5 < dl + d2 + 2t = 7,

(X4 = 7 < dl + d2 + 2t = 9.
Hence,
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for t == 1,2,3,4 and 1= (Xt + 1,... , dl + d2 + 2t.

(b) Structure of the table of minimal solutions (see Table IV). In view of
Theorem 3, the elements of order [3,2], [3,3], and [4,2] have the same
minimal solution.

Using Theorem 6 we see that

for I == 1,2,... ,9 with the exception of I = 4. The further results are displayed
in Table IV.
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